home *** CD-ROM | disk | FTP | other *** search
- à 1.1 Basic Defïitions
-
- äèèDetermïe if ê followïg is an ordïary or a
- èèèèèèèèpartial differential equation.
-
- â dìyèèèè dy
- ─── + sï[x]── - 6yì = 3e╣ is an ordïary differential equation.
- dxìèèèè dx
-
- è ┤║uèè ┤║u
- a║ ───è=è───èis a partial differential equation.
- è ┤x║èè ┤t║
-
- éSèA DIFFERENTIAL EQUATION is any equation that contaïs at least
- one derivative.èThis derivative may be eiêr a ëtal derivative ç
- a function ç a sïgle variable or it may be a partial derivative ç
- a function ç two or more variables.
-
- A differential equation ç a function ç a sïgle variable is
- called an ORDINARY differential equation.èExamples are
-
- 1) d║yèèè dy
- ───è-è4 ──è+ 3 yè=è7eú╣
- dx║èèè dx
-
- Generally, ê PRIME notation for a derviative will be used so this
- ordïary differential equation could also be written
-
- y»» - 4y» + 3y = 7eú╣
-
- 2) 2x + y║ + 2xyy» = 0
-
- 3) P(x)y»» + Q(x)y» + R(x)y = 0èwhere P, Q å R are polynomials.
-
- A differential equation that ïvolves a function that has two or
- more variables requires partial derivatives å is called a PARTIAL
- differential equation.èExamples are
-
- 1) è┤║uèèè┤u
- y ───è- x ──è= 0
- è┤y║èèè┤x
-
- Often, partial derivatives can be written by use ç SUBSCRIPTS. This same differential equation would be
- yu╤╤ - xu╨ = 0
-
- 2) a║u╨╨è=èu▌▌èThis is ê wave equation.
-
- 3) u╨╨ + u╤╤ + u╓╓ = 0èThis is LaPlace's equation
-
- This program will only cover techniques for solvïg ordïary
- differential equations.
-
- 1 dÄyèèèdìyèèè dy
- ───è- 7 ───è+ 13 ──è- 25 y = tanúî[x] + cosh[3x]
- dxÄèèèdxìèèè dx
-
-
- A)èOrdïary B)èPartial
-
- ü As all ç ê derivatives are ëtal derivatives, this is an
- ordïary differential equation.
-
- Ç A
-
- 2 ┤║uèèèèè ┤║u
- ───è+ (x - y)───è=è0
- ┤x║ èèè┤yì
-
-
- A)èOrdïary B)èPartial
-
- üèThis differential equation contaïs partial derivatives with
- respect ë both x å y meanïg that u is a function ç those
- two variables.èThus this is a partial differential equation.
-
- ÇèB
- 3
- èèèè u╨╨ + u╤╤ - u╓╓ = 0
-
-
-
- A)èOrdïary B)èPartial
-
- ü This differential equation contaïs partial derivatives with
- respect ë x, ë y å ë z which means that u is a function
- ç êse three variables.èHence, this is a partial
- differential equation.
-
- ÇèB
- 4
- èèèè y»» - 3[y»]ì + sï[y] = 0
-
-
- A)èOrdïary B)èPartial
-
- ü This differential equation only has ëtal derivatives ç ê
- function y å hence is an ordïary differential equation.
-
- Ç A
-
- äèèGive ê order ç ê followïg differential equations.
-
- â y»»» - 5y»» + 7y» - 3y = sï[x]
- has a third derivative as its highest order derivative å
- hence is ç order 3.
-
- éS There are a number ç ways ç classifyïg differential
- equations.èThe ORDER ç a partial differential equation is defïed as
- ê order ç ê highest derivative present ï ê differential
- equation.èFor example
-
- 1) dy
- ──è= sï[x]èis a first order differential equaën.
- dx
-
- 2) y»» - 4y» + 3y = e╣èis a second order differential equation.
-
- 3) y»»»» - 16y = 5sï[2x] is a fourth order differential equation.
- 5
- èèèè y»»» - 4y»» + y║ = 0
-
- A)èèè1 B) 2
-
- C) 3 D) 4
-
-
-
- üèAs a third derivative is present å no higher order derivatives
- are present this is a differential equation ç order 3.
-
- Ç C
-
- 6 dyèè2
- ──è+ ─ y = tan[x]
- dxèèx
-
- A) 1 B) 2
-
- C) 3 D) 4
-
- ü The only derivative present is a first derivative so this
- differential equation is ç order 1.
-
- Ç A
-
- 7è èd║xèèè dx
- m ───è+èb ──è +èw║ yè=èF╠cos[w╠t]
- èdt║èèè dt
-
- A) 1 B) 2
-
- C) 3 D) 4
-
- ü This differential equation contaïs both a first å a second
- derviative å so ê order is 2.
-
- Ç B
-
- 8 xÄy»» + [y»]É - 9yÅ = xÆ
-
-
- A) 1 B) 2
-
- C) 3 D) 4
-
- ü This differential equation contaïs both a second derivative
- a first derivative (raised ë ê fifth power).èThus ê
- highest derivative is ê second å this is ç order 2.
-
- ÇèB
-
- äèèDetermïe which is a solution ç ê given differential
- èèèèèèèèequation.
-
- â For ê differential equation
-
- y»» - 4y» + 3y = 0
-
- y = 2eÄ╣ is a solution
-
- éS A SOLUTION ç a differential equation is any function y = f(x)
- which when substituted ïë ê differential equation produces
- a true statement.
-
- For example, for ê differential equation
-
- y»» - 4y» + 3y = 0
-
- The functionèy = 4eÄ╣ is a solution as
-
- [4eÄ╣]»» - 4[4eÄ╣]» + 3[4eÄ╣] =
-
- 36eÄ╣ - 48eÄ╣ + 12eÄ╣èèèè = 0
-
- It can also be shown that -5e╣ is a solution as is 26.84eÄ╣.
-
- Most differential equations have what is known as a GENERAL
- SOLUTION which contaï one or more (dependïg on ê order)
- arbitrary constants.èThis means that any substituion for ê
- constants will produce a solution ë ê differential equation.
-
- For ê differential equation
-
- y»» -è4y» + 3y = 0
-
- The general solution is
-
- y = C¬e╣ + C½eÄ╣
-
- The previous solution
- y = 4eÄ╣ fits ïë ê general solution with C¬ = 0 å C½ = 4
- as does ê solution y = -5e╣ with C¬ = -5 å C½ = 0.
-
- Pickïg C¬ = -8 å C½ = 7 produces ê solution
- y = -8e╣ + 7eÄ╣.
-
- 9 dyèè 4
- ──è+è─ yè=èxÄ
- dxèè x
-
- A) xÄèèè2 B) xÅèèè2
- ──è-è── ──è-è──
- 8èè xÉ 8èè xÅ
-
- C) xÉèèè2 D) All ç ê above
- ──è-è──
- 8èè xÄ
-
- ü For y = xÅ/8 - 2xúÅè y»è =èxÄ/2 + 8xúÉ
- 4y/x =èxÄ/2 - 8xúÉ
- So y» + 4y/x = xÄ å this is a solution.
-
- Ç B
-
- 10 y»» - 4y»è+ 3y = 0
-
-
- A) 3e╣ B) -0.25eÄ╣
-
- C) 5e╣ - 4e╣ D) All ç ê above
-
- ü Consider yè = C¬e╣ + C½eÄ╣
- y»è= C¬e╣ + 3C½eÄ╣
- y»» = C¬e╣ + 9C½eÄ╣
-
- y»» - 4y» + 3y = C¬e╣ + 9C½eÄ╣ - 4(C¬e╣ + 3C½eÄ╣)
- + 3(C¬e╣ + C½eÄ╣)
- èè = C¬e╣(1 - 4 + 3) + C½e╣(9 - 12 + 3)
- èè = 0
- Thus yè = C¬e╣ + C½eÄ╣ is a general solution ç this
- differential equation.
-
- Answer A corresponds ë C¬ = 3 å C½ = 0,
- Answer B corresponds ë C¬ = 0 å C½ = -0.25 å
- Answer C corresponds ë C¬ = 5 å C½ = -4.
- Thus all are solutions.
-
- Ç D
-
- è11 y»» + 6y» + 8yè=è2x + 4
-
- A) 7eúì╣ + 5eúÅ╣ + x/4 + 5/16
-
- B) 7eúì╣ - 5eúÅ╣ + x/4 - 5/16
-
- C) -7eúì╣ + 5eúÅ╣ - x/4 + 5/16
-
- D) -7eúì╣ - 5eúÅ╣ - x/4 - 5/16
-
- ü If y = 7eúì╣ + 5eúÅ╣ + x/4 + 5/16
-
- èèèy»» =è28eúì╣è+ 80eúÅ╣
-
- èèè6y» = -84eúì╣ - 120eúÅ╣ + 3/2
-
- èèè 8y =è56eúì╣ +è40eúÅ╣ + 2x + 5/2
-
- Thus y»» + 6y» + 8y = 2x + 4 which shows that this is a
- solution.èThe oêr answers do not produce a solution.
-
- Ç A
-
- äèèDetermïe if ê followïg differential equation is
- èèèèèèèèlïear or non-lïear.
- â
- èèè y»» + xy» + e╣y = cosh[x] is lïear.
-
- y»» + [y»]║ + tan[y] = 0èis non-lïear.
-
- éS If a differential equation can be written ï ê form
-
- a╠(x)yÑⁿª + a¬(x)yÑⁿúî) + ∙∙∙ + a┬▀¬(x)y» + a┬(x)yè=èg(x)
-
- it is a LINEAR differential equation.èIf it cannot be written
- ï this form it is a NON-LINEAR differential equation.
-
- For example
-
- 1)è7y»» + x║y» + eú╣y = cot[x] is lïear as ê coefficients
- èèç ê derivatives are functions ç x alone å no
- èèderivative is raised ë any power.
-
- 2)èy»» - [y»]Ä + cosh[y] = e╣èis non-lïear for two reasons.
- èèFirst, ê first derivative is raised ë ê third power
- èèå second, y is ê argument ç ê hyperbolic cosïe
- èèfunction.
- 12
- èèèèè y»»è+èxy»è+èsecì[x]yè=èeúÄ╣
-
-
- A)èLïear B)èNon-lïear
-
- ü The coefficients ç ê derivatives are functions ç x å ê
- derivatives are not raised ë any power.èThe right hå side
- is a function x alone.èThus, this is a lïear differential
- equation.
-
- Ç A
- 13
- èèèèè y»»è+èyy»è+èsec║[x]yè=èeúÄ╣
-
-
- A)èLïear B)èNon-lïear
-
- ü The second term yy» is not ç ê required form å hence this
- is a non-lïear differential equation.
-
- Ç B
- 14
- èèèèè y»»è+ètan[y]è=è7xÄ
-
-
- A)èLïear B)èNon-lïear
-
- ü The second term tan[y] is not ç ê required form å hence
- this is a non-lïear differential equation.
-
- Ç B
- 15
- èèèèè xìy»»è-è3xy»è+èsï[x]yè=ècosh[3x]
-
-
- A)èLïear B)èNon-lïear
-
- ü The coefficients ç ê derivatives are functions ç x å ê
- derivatives are not raised ë any power.èThe right hå side
- is a function x alone.èThus, this is a lïear differential
- equation.
-
- Ç A
-
-